

electricity storage

electricity storage at an unrivalled cost level

The enabling technology for a 100% decarbonized electricity supply

Launching a technology

- For large scale, stationary electricity storage
- Applications:
 - Combined with large PV and Wind
 - Substitute for peaking power plants
 - Connection with hydrogen infrastructures
- Fully modular, up to GW/GWh range
- Based on:
 - Flow battery technology
 - Active materials: Hydrogen & Bromine
- Patented worldwide

ELESTOR'S MISSION:

Targeting the lowest possible storage costs per MWh

Targeting the lowest storage costs per MWh

The Levelised Cost of Storage (LCoS) defines what the actual costs are to store 1 MWh of electrical energy

- Enables objective comparison of different storage technologies
- Determines storage business case viability

FACT:

The LCoS is decisive for the impact of storage on the energy transition

Technology: Combined Electrolyser and Fuel Cell

Power and Capacity are not coupled

- Membrane surface area → Power [MW]
- Active material volumes → Capacity [MWh]
 Virtually every thinkable combination is possible

100% reversible chemical reaction

- Chemicals are used, not consumed
- No refill during lifetime necessary
- Negligible loss of capacity during lifetime

FACT:

Reduces the LCoS to < € 50 / MWh

Implications of the transition to intermittent sources

Figure 8: Number of positive and negative extreme prices on average in selected EU countries, Source: Energy Brainpool

Elestor's technology perfectly matched the world's changing needs ...

 With more electricity from intermittent sources, longer periods of time need to be bridged to secure availability of electricity

 \rightarrow Growing need for storage with a large Energy [MWh] versus Power [MW]

With conventional batteries, Power scales linearly with Energy

 \rightarrow Elestor's system allows configuration of *any desired* combination of Power and Energy

• Product strategy:

... up to HBr flow batteries serving as <u>Bi-Directional Power Plants</u> replacing current gas peaker power pants

An in-depth analysis shows that, with the optimal combination of Sun+Wind+Storage, Elestor's technology offers the optimal economic solution for a reliable and fully decarbonized electricity supply, with 100+ hr storage duration

Global bromine reserves are virtually unlimited, thus low cost

Material	Global reserves (Kilotons)	Usage (kg/MWh)	Sufficient for% of required capacity	Supply & cost contraints
-	<u>^_</u>	Ŧ		+7.
Li Lithium Li-ion batteries	16.000 ²	0,9 ³	4%	 >90% of global reserves in 4 countries: Chile, China, Argentina, Australia. Oligopoly, no price pressure Mining creates large scale depletion and pollution of groundwater
Cobalt Li-ion batteries	7.100 4	0,2 ⁵	7%	 Approx. 60% of global reserves in 1 country: Congo, extreme geographic dependency Mined under torturous labour conditions
Vanadium Vanadium Redox Flow	20.0007	4,4 ⁸	1%	 85% of the global supply comes from China, Russia, South Africa Cost increased >400% from US\$ 13.50/kg in 12-2015 to US\$ 68/kg in 5-2018 90% of the Vanadium supply is used for hardening steel
Bromine Bromine Hydrogen Bromine Flow batteries	100.000.000.000	3,2	100%	+ Only 0,0016% of the global bromine reserves are sufficient for a 100% decarbonized electricity supply

The Hydrogen Bromine Flow Battery connects

Electricity Storage

Hydrogen Infrastructures

 ✓ <u>Electricity storage</u> based on Hydrogen Bromine Flow Battery technology

✓ Consists of

- Electrolyte tank
- Hydrogen tank
- Membrane stacks

✓ <u>Enables</u>

electricity storage at very low cost (LCoS)

✓ <u>Connects</u>

electricity storage with hydrogen infrastructures

 Hydrogen infrastructure serves as 'hydrogen tank' (with zero effect on infrastructure)

✓ <u>Reduces</u>

- 1) Battery capex
- 2) Storage costs
- 3) System size

✓ <u>Introduces</u>

new optimization options

Integration with electrolysers

✓ Integrates

electricity storage & hydrogen production

 ✓ <u>Maximizes</u> electrolyser utilization

✓ <u>Reduces</u>

- Capex flow battery
- Hydrogen production costs
- ✓ <u>Reduces</u>

storage costs per kWh (LCoS) *further*

About Elestor

Management

Guido Dalessi (60) CEO

- Graduated in Physics
- Demonstrated history in developing companies from startup to established global players
- Former CEO of Singulus Mastering BV, subsidiary of Singulus Technologies AG, Germany
- Early investor in Elestor BV

Wiebrand Kout (44) Founder & CTO

- High level of expertise of 3 hydrogen electrochemical systems:
 - PEM Fuel cells
 - Electrochemical hydrogen compressors
 - HBr flow batteries
- Head of Mechanical Design at Nedstack
- COO and Lead Designer at HyET

Hylke van Bennekom (38) COO

- Industrial Business Administration
- Background in PV and semicon
- Experience in high volume manufacturing of advanced technologies
- Broad international experience in strategic sourcing, establising production locations in Europe & Asia
- Joined per April 12, 2021 (MBI)

The Team

- International team (26 FTEs) of Scientists & Engineers, combined with broad Business Development experience
- 1 PhD candidate graduated in 2020 at Technical University Eindhoven, Dept of Membrane Materials and Processes (MMP),
- Prof. Dr. Kitty Nijmeijer.
- A second PhD candidate to promote in 2022

- 8 different nationalities
- Member of the European 'FlowCamp' consortium, led by Fraunhofer Institute, Germany
- Deep tech know-how on: Catalysts, Electrodes, Membranes, Electrolytes, Cell stacks, Control & power electronics, System architecture, Compliancy
- > 100,000 R&D hours since June 2014

Ecosystem

Research partners

Elestor was granted several (inter)national awards

- 2015 Challenge Cup for Best Pitch InnoEnergy Benelux
- Jan Terlouw Ambition Award 2016 Kiemt Congress
 Audience Award 2016 Kiemt Congress
 Sustainable Energy Startup Award SWECO
- 2017 **Best Technical Development within Energy Storage** IDTechEx Europe (juried by Fraunhofer Institute, Technical University Berlin, Toyota Motors Europe)
- 2019 **Pearl of the Region** The Economic Board
- 2020 Best Poster Award German Society for Membrane Technology

Verbund X-Accelerator, Austria, 1 of 6 winners out of 300+ participants

2021 Innovation 2020 Audience Award Chamber of Commerce

Best Energy Stroage Solutions Provider 2021 Benelux Enterprise Award

TOP10 Dutch Innovation Award Amsterdam Centre for business Innovation (University of Amsterdam)

elestor

Commercial projects

- Royal Vopak is the world's leading independent tank storage company on sea port terminals
 - Agreement signed in April 2021
 - Part of Vopak's "New Energy strategy"
 - Initially 500kW/3MWh \rightarrow 25MW/250MWh scale
- A 2nd agreement with a European corporate in sight for integration with electrolysers
- Elestor <u>preferred supplier</u> SunCable tender, Australia, 1GWh delivery between 2024-2030

eal time updates on the news affecting the global economy. Enable Notifications.

Business

CABLE

World's Top Oil Storer Turns to Large-Scale Batteries

FINANCIAL POST

PMN Business

- World's Top Oil Storer Turns to
- Large-Scale Batteries for Grid

Roadmap and perspective

- 2020-21
- Deploy pre-production system (Norway)
 - 50kW/250kWh
 - In-house production of stacks
 - Outsource system assembly
- 2021-22 1st and 2nd commercial deals: Vopak (+2 in pipeline)
 - 500kW/3MWh, to be scaled to 25MW/250MWh
 - Automated stack production
 - Max outsource system assembly
- 2022-24 Construct and operate pilot plant for large scale automated stack production
- 2025- Construction first 'Giga-factory' equivalent for stack production, system assembly at local markets

"We will make electricity so cheap that only the rich will burn candles"

Thomas A. Edison