FLIE event – Case Ducor Heat Pump

Original heat-supply and water-loop heat-pump design

T _{HeatSink}	T _{HeatSource}	СОР
95 °C	50 °C	4.1

Two main challenges:

- COP is relatively low
- Much larger Heat Exchangers required since energy density of condensation is much higher than the energy density of hot water.

Figure 1 Illustration of proposed heat pump to reduce steam consumption

Alternative heat-supply and integrated heat-pump design

Loop	T _{HeatSink}	T _{HeatSource}	СОР
1.	80 °C	50 °C	5.9
2.	72 °C	40 °C	5.4
Weighted average (energy)			5.7

Alternative design:

- Elimination of the waterloop by integrating the heatpump systems with the heat exchangers.
- COP 4.1 → 5.7 => 28% less electricity consumption
- Similar size heat exchangers needed compared to existing situation. Therefore less complex modifications required.

Energy cost reduction

Energy consumption	EUR/jr
Cost of current Steam Energy Consumption	1,2 mln EUR/yr
Cost of electric energy consumption of the two heat pumps in alternative design	0,3 mln EUR/yr
Reduction in energy cost	0,9 mln EUR/yr

Investment

Investment of alternative design	Investment (+/- 50%)
Heatpump #1 (0,24 MW) *)	EUR 750.000,
Heatpump #2 (0,13 MW) *)	EUR 350.000,
Supporting E&I-systems	Excluded
Supporting Civil, Piping and Mechanical installations	Included but based on rough guestimate
Heat pumps integration with currect exchangers (i.e. propylene heater and splitter reboiler)	Excluded
<u>Total</u>	Difficult to estimate at this stage

^{*)} NB: Heatpump in original design: 0,51 MW = EUR 1,5 mln which is more expensive than two smaller heatpumps

Conclusion

Alternative dual loop heatpump design results in:

- Lower energy consumption
- Lower CAPEX
- Better payback time

Royal Haskoning DHV SPIE

Summary of theoretical thermodynamics background

