

Olvondotech.no

Een unieke techniek Waar de warmtepomp eindigt Biedt Olvondo de oplossing

- Stirling motor voor liften van (rest)warmte
- Mogelijke bronwarmte tussen 0° en 100°C graden
- Max. temperatuur-afgifte tussen 100° en 200°C graden t/m stoom 180°C
- Vermogen 750kw per stuk. (uitbreidbaar in cascade)
- Helium als "working fluid"
- Dus i.c.m. duurzame stroom een 100% fossielvrije oplossing!

Typical applications:

 Production of steam or hot process water from waste heat or district heating

Applicable industry segments:

- Pulp & paper
- Food and beverage
- Process and chemical
- Pharmaceutical
- District heating

Experiences:

 More than 60.000 operational hours from pilot installations

How could an Industrial heatpump look like?

On the next slide we see a few pictures how an Industrial heatpump could look like.

These are 3 different heatpumps from 3 different supplies

Cascade setup

In house installed

Plug and play Heatpump in Container

- Sustainable Process Heat
- Most flexibel concept,
- meets HT demands incl. WH2Steam
- Startup but ready to market
- Next project 2022 1.4 MW

medium heat source	water, water-glycol, thermal oil, steam	
temperature heat source	20°C – 150°C	
medium heat sink	water, thermal oil, steam	
temperature heat sink	80°C – 200°C	
Heating capacity per installed compressor	400 kW – 1000 kW depending on operating point	
temperature stroke per step	> 100 K, in practice mostly <80 K	
structure	1-stage, 2-stage, parallel, serial	
power control	stepless 30%-100%	
working media	HFOs with GWP < 10 or natural hydrocarbons	

Cooling water typ. 30-90°C

Heat recovery typ. 30-120°C

Condensate Cooling typ. 50-90°C

Machine waste heat typ. 50-90°C

Process waste heat typ. 50-120°C

Hot water typ. 90-160°C

Feed water preheating typ, 100-160°C

Saturated steam typ. 110-150°C

Air heating typ. 90-160°C

Warm water typ. 80-120°C

typ. COP: 2-7

Unique selling point's

- Fixe machine as 1 fits all applications,
- New design compressor with new higher max lift (80C) *)
- So one compressor using different refrigerants
- Low GWP

- Heat source temperature spread 3°C –30°
- So you can at this point take lot of heat out of a single source.
- Says Source side input /output = 60/30 (as a cooling tower)
- Heat Sink temperature spread 5°C –50°
- Say you could heat from 40/90 or 100/150
- Max. temperature output 165°C (next model 2.0 max 200°C)
- No steam needed then use thermal oil fore drying applications for example
- Modulating from 100-30% of max performance.
- Last but not least: Simple but effective so competitive pricing

*) Lift is temperature difference between source and sink output,

Let see if we could do some calculation and how find some indicated payback time

STEP 1	STEP 2	First Payback calculations
Calculated investment heatpump 4.2. MW output	Price of steam is not know	
	O Actual prices are expected to be extreme high	Calculated investment € 3.000.000
(Available heat + Power = output)	base on daly prices of nat. Gas	Yearly cost of steam??? € 1.540.000
	0 I calculate € 35 /Ton	Yearly cost of heatpump?? € 750.000
Setup, transport design etc ??? 4800	use of ton/hour 5,5	Yearly lower costs € 790.000
	Yearly cost of steam 8000	Yearly payback time 3,8
Budgetprice Capex € 3.000.0	0 Total cost of steam € 1.540.000	
(EIA available ???) Check	Price of ton/steam in real life? Check	
Power demand/h KW 7	0	
Yearly running hours 80	0	
Price / kwh Check! € 0,	0	
Opex € 560.0	0	
Service & maintenance (SLA) on reques € 40.0	0	
Expected lifetime Year 20		
Simplified calculated yearly € 750.0	0	
Check: 127, TJ 35000 MW energy	Check: Cost of steam € 1.540.000	
8000 h * 4,2 MW = 33600 MW energy 94	6 heatpump € 750.000	
So 94% of all steam supplied will be avoid	This makes a yearly gain if € 790.000	

So YES the need of steam will be excluded while using a heatpump And YES payback time could be lower than 7 years but this is just al lucky shot, So when all financial data is given then a secure payback time will be available

Some conclusions and/or ideas to consider.

- Without knowledge of prices of steam and power it is not possible calculating a fair payback time. When this data is kept "secret" then challenge should not be about finding best Payback time!
- Lots of energy is moving around on the plant with lots of difference between temperatures, it seems there a more interesting opportunities re-use of wasted heat. This needs a second check I would say.
- 24 MW energy is lost in cooling towers. Is there any opportunity this could be used once more?
- All quality is as good as clean so this can be directed used in a <u>heatpump</u> or should heatexchangers should be installed?
- Installing a power optimizing technology could show `higher efficiency of power needs witch
 will increase all over profits of this case. Could this be an interesting option for the <u>Ducor</u>
 plant?
- Final challenge will be calculated if all data is available.
- Consider a 1 MW pilot showing proof of performance.
- Consider ESCO solution then no investment and price/uptime.
- Consider cascade concept with lower risk of downtime and easy to maintenance.
- Prefer co-operation with local contractors.

Some conclusions and/or ideas to consider.

- Share data from investigated sustainable study
- Share all data prices of steam and power (past /now and future)
- Share data (anonymus) of calculated heatpump.
- Without this data it is hard/impossible calculating a best payback time
- Capex has low effect on PB time
- Cost of steam and power had high effect on PB time.
- Include power optimizing technology for decreasing need of power.

Any questions?